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We present a new feature selection algorithm for structure-activity and structure-property
correlation based on particle swarms. Particle swarms explore the search space through a
population of individuals that adapt by returning stochastically toward previously successful
regions, influenced by the success of their neighbors. This method, which was originally intended
for searching multidimensional continuous spaces, is adapted to the problem of feature selection
by viewing the location vectors of the particles as probabilities and employing roulette wheel
selection to construct candidate subsets. The algorithm is applied in the construction of
parsimonious quantitative structure-activity relationship (QSAR) models based on feed-forward
neural networks and is tested on three classical data sets from the QSAR literature. It is shown
that the method compares favorably with simulated annealing and is able to identify a better
and more diverse set of solutions given the same amount of simulation time.

I. Introduction
In recent years, there has been an increasing need

for novel data-mining methodologies that can analyze
and interpret large volumes of data. Artificial intel-
ligence methods, such as artificial neural networks,
classification and regression trees, and k nearest-
neighbor classifiers, have been used extensively for this
purpose.1-3 Most of these methods work by correlating
some experimentally determined measure of biological
activity with a set of physicochemical, structural, and/
or electronic parameters (descriptors) of the compounds
under investigation. Since it is not possible to know a
priori which molecular properties are most relevant to
the problem at hand, a comprehensive set of descriptors
is usually employed, chosen based on experience, soft-
ware availability, and computational cost.

However, it is well-known, both in the chemical and
statistical fields, that the accuracy of classification and
regression techniques is not monotonic with respect to
the number of features employed by the model. Depend-
ing on the nature of the regression technique, the
presence of irrelevant or redundant features can cause
the system to focus attention on the idiosyncrasies of
the individual samples and lose sight of the broad
picture that is essential for generalization beyond the
training set.4-6 This problem is compounded when the
number of observations is also relatively small. If the
number of variables is comparable to the number of
training patterns, the parameters of the model may
become unstable and unlikely to replicate if the study
were to be repeated.

Feature selection attempts to remedy this situation
by identifying a small subset of relevant features and
using only them to construct the actual model. Fea-
ture selection algorithms can be divided into three
main categories:7 (1) those where the selection is
embedded within the basic regression algorithm, (2)

those that use feature selection as a filter prior to
regression, and (3) those that use feature selection as a
wrapper around the regression. The last has a long
history in statistics and pattern recognition and is the
method of choice for quantitative structure-activity
relationship (QSAR) and quantitative structure-prop-
erty relationship (QSPR).

From an algorithmic perspective, feature selection can
best be viewed as an heuristic search, where each state
in the search space represents a particular subset of the
available features. In all but the simplest cases, an
exhaustive search of the state space is impractical, since
it involves 2n possible combinations, where n is the total
number of available features. Several search algorithms
have been devised, ranging from simple greedy ap-
proaches such as forward selection or backward elimi-
nation8 to more elaborate methodologies such as simu-
lated annealing,9 evolutionary programming,10 genetic
algorithms,11-14 and artificial ants.15,16

In this paper, we present a novel approach inspired
from the study of human sociality, known as particle
swarms.17-19 Particle swarms explore the search space
through a population of individuals, which adapt by
returning toward previously successful regions. Their
movement is stochastic and is influenced by the indi-
viduals’ own memories as well as the memories of their
peers. This method, which was originally intended for
searching multidimensional continuous spaces, is adapted
to the problem of feature selection by viewing the
location vectors of the particles as probability thresholds
and employing roulette wheel selection to construct
candidate subsets. In the remaining sections, we provide
the key algorithmic details of the binary particle swarm
optimizer and discuss its advantages compared to
simulated annealing using three classical data sets from
the QSAR literature. While the present study uses
artificial neural networks to construct the models, the
method is general and can be used with any machine-
learning technique, including multilinear regression,
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case-based reasoning (nearest-neighbor regression), fuzzy
logic, and many others.

II. Methods
Neural Networks. Our analysis was based on three-layer,

fully connected multilayer perceptrons, trained with the
standard error back-propagation algorithm.20 The logistic
transfer function f(x) ) 1/(1 + e-x) was used for both hidden
and output layers. During feature selection, each network was
trained for 200 epochs, using a linearly decreasing learning
rate from 1.0 to 0.01 and a momentum of 0.8. During each
epoch, the training patterns were presented to the network
in a randomized order. To minimize the risk of back-propaga-
tion getting trapped in local minima in synaptic weight space,
each model was trained three times and the model with the
lowest training error was retained. The best models identified
by the particle swarm and simulated annealing algorithms
were retrained and cross-validated 50 times using leave-one-
out cross-validation to establish their true learning and
generalization capabilities. These were quantified by the
Pearson correlation coefficient:

where N is the number of training patterns and yi and ỹi are
the measured and predicted activities of the ith compound,
respectively.

Particle Swarms. Particle swarms (PS) is a relatively new
optimization paradigm introduced by Kennedy and Eber-
hart.17,18 The method is based on the observation that social
interaction, which is believed to play a crucial role in human
cognition, can serve as a valuable heuristic in identifying
optimal solutions to difficult optimization problems. Particle
swarms explore the search space using a population of
individuals, each with an individual, initially random location
and velocity vector. The particles then “fly” over the state
space, remembering the best solution encountered. Fitness is
determined by an application-specific objective function f(x).
During each iteration, the velocity of each particle is adjusted
on the basis of its momentum and the influence of the best
(most fit) solutions encountered by itself and its neighbors.
The particle then moves to a new position, and the process is
repeated for a prescribed number of iterations. In the original
PS implementation,21 the trajectory of each particle is governed
by the equations

and

where xi and vi are the current position and the velocity of
the ith particle, pi is the position of the best state visited by
the ith particle, b(i) is the particle with the best fitness in the
neighborhood of i, and t is the iteration number. The param-
eters η1 and η2 are called the cognitive and social learning rates
and determine the relative influence of the memory of the
individual versus that of its neighborhood. In the psychological
metaphor, the cognitive term represents the tendency of
organisms to repeat past behaviors that have been proven to
be successful or have been reinforced by their environment,
whereas the social term represents the tendency to emulate
the successes of others, which is fundamental to human
sociality. In effect, these terms introduce a tendency to sample
regions of space that have demonstrated promise. r is a random
number, whose upper limit is a constant parameter of the

system, and is used to introduce a stochastic element in the
search process.

Kennedy defined four models of PS:21 the full model, which
places equal influence for the cognitive and social influence,
the social-only model, which involves no cognitive learning,
the cognitive-only model, which has no social component, and
the selfless model, which is a social-only model in which the
individual is excluded from consideration in determining its
neighborhood’s best. The neighborhood represents a subset of
the population surrounding a particular particle. The neigh-
borhood size defines the extent of social interaction and can
range from the entire population to a small number of
neighbors on either side of the particle (i.e., for the ith particle,
a neighborhood size of 3 would represent particles i - 1, i,
and i + 1).

The present work employs Shi and Eberhart’s22,23 variant
of the PS algorithm, which makes use of an inertia weight, ω,
to dampen the velocities during the course of the simulation
and allows the swarm to converge with greater precision:

Larger values of ω induce larger transitions and thus enable
global exploration, whereas lower values facilitate local ex-
ploration and fine-tuning of the current search area.

Binary Particle Swarms. The particle swarm algorithm,
which was originally intended for searching multidimensional
continuous spaces, can be adapted to the discrete problem of
feature selection by viewing the location vectors of the particles
as probabilities and employing roulette wheel selection to
construct candidate subsets. In this scheme, the elements of
the location vectors xij and pij can only take the values 0 and
1 and indicate whether the jth feature is selected in the ith
particle (subset). A discretization step is introduced following
the application of eq 3, which converts the fractional coordi-
nates, xij, to binary values using probabilistic selection. During
this step, the fractional values of xij are treated as probability
thresholds to determine subset membership. Two possibilities
can be envisioned to prevent overfitting: (1) to select each
feature on the basis of its own probability and employ an
objective function that penalizes solutions containing a large
number of features, such as Rao’s lack-of-fit;24 (2) to select a
predefined number of features on the basis of the ratio of the
number of training patterns to the number of freely adjustable
parameters in the model. In the latter case, which is the one
employed in this work, the features comprising the model are
determined by roulette wheel selection. In this method, each
feature is assigned a slice of a roulette wheel whose size is
equal to the probability assigned to that feature. The subset
is assembled by spinning the wheel and selecting the features
under the wheel’s marker. This process is repeated k times,
where k is the number of desired features in the model
(duplicates are excluded).

The actual probabilities, pij, are computed by eq 5:

where xij is the fractional coordinates obtained by applying eq
3 (confined in the interval [0, 1]) and R is a scaling factor
referred to as selection pressure. If R is greater than 1, the
selection tends to emphasize highly fit individuals, whereas
if it is less than 1, the differences between the individuals are
attenuated and less fit individuals have an increased chance
of being selected. To eliminate redundant computation, the
program caches all visited states and their fitness into a lookup
table, implemented as a sorted vector of pointers with
(O(n log n) insertion)/(retrieval time).

Simulated Annealing. Simulated annealing (SA) is a
global, multivariate optimization technique based on the
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Metropolis Monte Carlo search algorithm.25 The method starts
from an initial random state and walks through the state space
associated with the problem of interest by a series of small
stochastic steps. In the problem at hand, a state represents a
particular subset of k features and a step is a small change in
the composition of that subset (i.e., replacement of one of the
features comprising the subset). As with particle swarms, an
objective function, f(x), maps each state to a real value that
represents its energy or fitness. While downhill transitions are
always accepted, uphill transitions are accepted with a prob-
ability that is inversely proportional to the energy difference
between the two states. This probability is computed using
Metropolis’ acceptance criterion p ) e-∆E/(KT), where K is a
constant used for scaling purposes and T is an artificial
temperature factor that controls the ability of the system to
overcome energy barriers. The temperature is systematically
adjusted during the course of the simulation in a manner that
gradually reduces the probability of high-energy transitions
(in this case, using a Gaussian cooling schedule with a half-
width of 5 deviation units). This protocol results in two
optimization phases: one in which the system explores the
state space relatively freely and one in which it equilibrates
around a low-energy minimum.

To circumvent the problem of selecting an appropriate value
for K and to ensure that the transition probability is properly
controlled, we use an adaptive approach in which K is not a
true constant, but rather it is continuously adjusted during
the course of the simulation on the basis of a running estimate
of the mean transition energy.26,27 In particular, at the end of
each transition, the mean transition energy is updated and
the value of K is adjusted so that the acceptance probability
for a mean uphill transition at the final temperature is some
predefined small number (here, 0.1%).

Data Sets. The methods were tested on three well-known
data sets: antifilarial activity of antimycin analogues
(AMA),8,10-12,28 binding affinities of ligands to benzodiazepine/
GABAA receptors (BZ),29,30 and inhibition of dihydrofolate
reductase by pyrimidines (PYR31). These data sets have been
the subject of extensive QSAR studies and have served as a
test bed for many feature selection algorithms. To allow
comparison with previous neural-network-based approaches,
the number of input features and hidden neurons was taken
from the literature. These details are summarized in Table 1.
In all three cases, the descriptor data were normalized to [0,
1] prior to network modeling.

Implementation. All programs were implemented in the
C++ programming language and are part of the DirectedDi-
versity32 software suite. They are based on 3-Dimensional
Pharmaceuticals’ Mt++ class library33 and are designed to run
on all Posix-compliant Unix and Windows platforms. All
calculations were carried out on a Dell Inspiron 8000 laptop
computer equipped with a 1 GHz Pentium IV Intel processor
running Windows 2000 Professional.

III. Results and Discussion
Model Assessment. Our study was designed to

accomplish two main goals. The first was to establish a
reasonable set of parameters for the particle swarm
optimizer, and the second was to determine whether the
method offers any advantages over other commonly used
search algorithms that employ neural networks for
activity prediction. The choice of simulated annealing
was based on its programmatic simplicity, robustness,

and track record in structure-activity correlation and
multimodal optimization in general. For comparison
purposes, the best models obtained from another insect-
based optimization algorithm16 using a similar protocol
are listed in Table 2.

Following common practice, two measures were used
to define the quality of the resulting models. The first
is the training correlation coefficient R (eq 1), and the
second is the cross-validated correlation coefficient RCV
resulting from leave-one-out cross-validation. The latter
is obtained by systematically removing one of the
patterns from the training set, building a model with
the remaining cases, and predicting the activity of the
removed case using the optimized weights. This is done
for each pattern in the training set, and the resulting
predictions are compared to the measured activities to
determine their degree of correlation. Since back-
propagation is susceptible to local minima, each network
model was trained three times using a different set of
randomly chosen initial weights and the lowest training
error was used to score the corresponding subset.

Given the fact that both particle swarms and simu-
lated annealing are stochastic in nature, we carried out
50 independent runs for each set of optimization pa-
rameters, each time starting with a different random
seed. The same procedure was followed for all three data
sets under investigation, and the results are sum-
marized in Tables 3, 5, and 7 for AMA, BZ, and PYR,
respectively. To ensure a fair comparison, the PS, SA,
and random sampling methods were given the same
amount of simulation time, measured in terms of
function evaluations. Past experience with these data
sets suggested that 1000 trials represented a good
tradeoff between accuracy and speed and would be a
reasonable limit for comparing the three methods.

To gain additional confidence, the best subsets dis-
covered from all 50 runs of the reference PS and SA
configurations (for PS, 100 particles, 10 iterations; for
SA, 30 temperature cycles, 33 sampling steps) were
retrained 50 times using 1000 training epochs and
tested using leave-one-out cross-validation. The mean
and standard deviation of the training and cross-
validated correlation coefficients R and RCV are listed
in Tables 4, 6, and 8 for the AMA, BZ, and PYR data
sets, respectively, along with the number of times that
each subset was discovered by each optimizer. The
entries are listed in descending order of R.

In a comparison of optimization techniques, it is
important to recognize that the relative quality of the
various algorithms can only be assessed on the basis of
the functions that they were designed to optimize.
Although cross-validation is an essential component of
QSAR, feature selection is guided exclusively by the
training error, which is often poorly correlated with the
generalization ability of the resulting model. For ex-
ample, the correlation coefficients between the average
training and cross-validated correlation coefficients of
the models listed in Tables 4, 6, and 8 were only 0.448,
0.347, and 0.425, respectively. This suggests that even
when the mapping device has a limited number of
adjustable parameters to prevent overfitting, the train-
ing R, which is in effect the function optimized by the
search algorithm, is a rather poor indicator of the
model’s generalization ability. Thus, for the purposes

Table 1. Data Set Size and Neural Network Topology Used

data set Na Mb Kc Hd ref

AMA 31 53 3 3 8
BZ 57 42 6 2 29
PYR 74 27 6 2 31

a Number of samples. b Number of features in the original data
set. c Number of features used in the models. d Number of hidden
neurons.
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of this study, it is the model with the highest R rather
than RCV that is considered to have the best quality.

Effects of Swarm Parameters. The performance of
the particle swarm optimizer is controlled by seven
parameters: (1) the population size, (2) the number of
iterations, (3) the neighborhood size, (4) the cognitive
learning rate η1, (5) the social learning rate η2, (6) the
inertia ω, and (7) the selection pressure R. In this work,
we examined the influence of all these parameters
except the neighborhood size and selection pressure,

which were set to 5 and 2, respectively. Our study was
carried out in two stages. During the first stage, we
studied four representative combinations of population
size and number of iterations, constraining the total
number of function evaluations to 1000 and setting η1,
η2, and ω to some “reasonable” default values (1, 1, and
0.9, respectively). We found that the results were
generally similar as long as the number of particles was
sufficiently large. When the population size is very
small, the trajectories of the particles are synchronized
prematurely, and the swarm converges to the nearest
local minimum, which is often suboptimal, losing much
of its exploratory ability.

This is nicely illustrated by plotting the number of
unique states visited during the search for each pair of
simulation parameters (Figure 1). In all three cases, this
number decreases sharply with decreasing population
size and drops below 20% for populations of size 10. On
the other extreme, random search (labeled “1000 0” in
Figure 1) is virtually impervious to this problem. The
differences among the three data sets reflect the un-
derlying combinatorics, which for the n-choose-k prob-
lem are given by the binomial coefficient:

For the AMA, BZ, and PYR feature selection tasks
(see Table 1), the number of possible combinations is
23 426, 5 245 786, and 296 010, respectively, which
implies that the likelihood of producing unique states
decreases in the order BZ > PYR > AMA, as observed
in Figure 1.

Table 2. Top Models Selected by the Artificial Ant Algorithm (See Ref 16)

data set selected variables (names) selected variables (indices)a µ(RCV)b σ(RCV)c

AMA NSDL8, MOFI_Y, LOGP 31, 37, 49 0.838 0.010
NSDL8, MOFI_Z, LOGP 31, 38, 49 0.826 0.007
MOFI_Y, LOGP, SUM_F 37, 49, 51 0.807 0.023

BZ µ7, π7, σm7, MR1, R1, µ2 0, 1, 5, 9, 11, 14 0.890 0.009
µ7, π7, F7, MR1, σp1, σm2 0, 1, 3, 9, 13, 19 0.888 0.019
µ7, π7, F7, MR1, σm2, π6 0, 1, 3, 9, 19, 22 0.885 0.011

PYR SZ3, FL3, Hd3, πA3, SZ5, HA5 1, 2, 3, 5, 19, 22 0.796 0.005
Hd3, πA3, FL4, PO4, SZ5, HA5 3, 5, 11, 16, 19, 22 0.786 0.035
SZ3, FL3, πA3, SZ5, Hd5, HA5 1, 2, 5, 19, 21, 22 0.785 0.037

a Zero-based indices of selected variables. b Average leave-one-out cross-validated R over 10 cross-validation runs. c Standard deviation
of leave-one-out cross-validated R over 10 cross-validation runs.

Table 3. Quality of Models Selected by PS, SA, and Random Selection for the AMA Data Set, with Each Row Representing 50
Independent Optimization Runs

opta sizeb stepsc η1
d η2

e ωf Rg trialsh µ(R)i σ(R)j min (R)k max (R)l

PS 100 10 1 1 0.9 2 3 0.905 0.021 0.842 0.931
PS 50 20 1 1 0.9 2 3 0.901 0.019 0.829 0.932
PS 25 40 1 1 0.9 2 3 0.895 0.021 0.839 0.932
PS 10 100 1 1 0.9 2 3 0.862 0.039 0.742 0.915
PS 100 10 1 0.5 0.9 2 3 0.899 0.021 0.851 0.935
PS 100 10 1 0 0.9 2 3 0.882 0.021 0.826 0.928
PS 100 10 0.5 1 0.9 2 3 0.897 0.018 0.859 0.931
PS 100 10 0 1 0.9 2 3 0.899 0.017 0.845 0.927
PS 100 10 1 1 0.5 2 3 0.902 0.022 0.834 0.930
PS 100 10 1 1 0.1 2 3 0.894 0.020 0.851 0.937
PS 100 20 1 1 0.9 2 3 0.905 0.019 0.851 0.931
SA 30 33 3 0.890 0.002 0.884 0.894
SA 30 66 3 0.891 0.002 0.888 0.900
SA 30 133 3 0.892 0.002 0.889 0.898
R 1000 3 0.872 0.023 0.809 0.916

a Optimizarion algorithm (PS, particle swarm; SA, simulated annealing; R, random selection). b Number of particles in the swarm.
c Number of iterations. d Cognitive learning rate. e Social learning rate. f Inertia. g Selection pressure. h Number of back-propagation
refinements. i Mean training R. j Standard deviation of training R. k Minimum training R. l Maximum training R.

Table 4. Best Models Selected by PSa and SAb for the AMA
Data Set (50 Runs, 1000 Training Epochs)

rank featuresc
freq
(PS)d

freq
(SA)e µ(R)f σ(R)g µ(RCV)h σ(RCV)i

1 3, 4, 49 23 0 0.945 0.010 0.818 0.013
2 31, 34, 49 9 2 0.919 0.004 0.825 0.012
3 31, 37, 49 0 8 0.918 0.007 0.837 0.008
4 6, 49, 50 0 21 0.913 0.012 0.796 0.016
5 31, 35, 49 4 0 0.912 0.006 0.831 0.009
6 16, 49, 50 0 2 0.910 0.009 0.790 0.012
7 31, 38, 49 0 1 0.910 0.007 0.826 0.007
8 2, 3, 49 1 0 0.909 0.020 0.687 0.037
9 37, 49, 51 2 0 0.909 0.006 0.799 0.014

10 3, 6, 49 0 16 0.908 0.019 0.755 0.013
11 35, 49, 51 7 0 0.907 0.022 0.799 0.014
12 34, 49, 51 3 0 0.905 0.021 0.764 0.023
13 4, 12, 49 1 0 0.903 0.023 0.619 0.029

a Swarm parameters: 100 particles, 10 iterations, η1 ) 1, η2 )
1, ω ) 0.9, R ) 2. b Annealing parameters: 30 temperature cycles,
33 sampling steps. c Zero-based indices of features comprising the
best models identified by 50 independent runs of the PS and SA
algrotihms. d Number of times that the PS algorithm converged
to this model. e Number of times that the SA algorithm converged
to this model. f Mean training R. g Standard deviation of training
R. h Mean leave-one-out cross-validated R. i Standard deviation of
leave-one-out cross-validated R.

(nk ) ) n!
k!(n - k)!

(6)
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This general trend reflects the classical dilemma
between exploration and exploitation as two opposing
strategies in optimization. A good optimizer must be
able to simultaneously explore the state space to gather
information about the environment and exploit existing
knowledge to increase the reward and ensure that the
optimum is identified within a finite number of sam-
pling steps. These two goals are mutually conflicting,
and finding the optimum balance between them is the
key to constructing a successful optimizer. Moving away
from this optimum in either direction is detrimental;
in the case at hand, if the swarm is too small, it ceases
to explore and becomes trapped in local minima, and if
it is too large, it degrades to random search.

The next set of experiments is aimed at investigating
the relative impact of the cognitive and social learning
rates η1 and η2 and the momentum ω. These experi-
ments were based on swarms consisting of 100 particles
allowed to evolve for 10 iterations. With regard to the
learning rates, we found that in all three cases, strong
social learning was essential for good performance and
the best results were obtained with equal contributions

from the cognitive and social components (see Tables
3, 5, and 7). Although the differences are relatively
small, it is clear that particle swarms draw their
strength from their cooperative nature and are most
effective when nostalgia and envy coexist in a balanced
mix. Similar effects were observed with the momentum
ω, which controls the ability of the swarm to change
direction on the basis of dynamic feedback from its
environment. If the momentum is too small, the swarm
loses its ability to drift away in search of new experi-
ences and becomes rapidly dominated by its recent past
(see Tables 3, 5, and 7). It is a well-known fact that
while learning from past experiences is essential for
social progress, conformism most often leads to social
stagnation and demise.

Comparison with Simulated Annealing. The re-
sults in Tables 3, 5, and 7 reveal an interesting
difference between particle swarms and simulated an-
nealing. While the average fitness of the resulting
models does not lead to any definitive conclusions
(particle swarms are better than annealing for AMA,
worse for BZ, and comparable for PYR), there is a

Figure 1. Mean and standard deviation of the percentage of unique states generated in 50 independent runs of several
configurations of the particle swarm algorithm, involving a total of 1000 sampling steps.

Table 5. Quality of Models Selected by PS, SA, and Random Selection for the BZ Data Set, with Each Row Representing 50
Independent Optimization Runs

opta sizeb stepsc η1
d η2

e ωf Rg trialsh µ(R)i σ(R)j min(R)k max(R)l

PS 100 10 1 1 0.9 2 3 0.946 0.011 0.902 0.960
PS 50 20 1 1 0.9 2 3 0.946 0.013 0.888 0.960
PS 25 40 1 1 0.9 2 3 0.949 0.011 0.909 0.960
PS 10 100 1 1 0.9 2 3 0.944 0.011 0.914 0.958
PS 100 10 1 0.5 0.9 2 3 0.941 0.024 0.813 0.959
PS 100 10 1 0 0.9 2 3 0.938 0.012 0.894 0.958
PS 100 10 0.5 1 0.9 2 3 0.943 0.012 0.900 0.959
PS 100 10 0 1 0.9 2 3 0.945 0.011 0.902 0.961
PS 100 10 1 1 0.5 2 3 0.947 0.011 0.914 0.960
PS 100 10 1 1 0.1 2 3 0.944 0.013 0.900 0.958
PS 100 20 1 1 0.9 2 3 0.949 0.010 0.920 0.960
SA 30 33 3 0.954 0.003 0.946 0.959
SA 30 66 3 0.957 0.002 0.950 0.960
SA 30 133 3 0.958 0.001 0.955 0.960
R 1000 3 0.932 0.018 0.843 0.952
a Optimizarion algorithm (PS, particle swarm; SA, simulated annealing; R, random selection). b Number of particles in the swarm.

c Number of iterations. d Cognitive learning rate. e Social learning rate. f Inertia. g Selection pressure. h Number of back-propagation
refinements. i Mean training R. j Standard deviation of training R. k Minimum training R. l Maximum training R.
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marked difference in the standard deviations, which are
almost 4-10 times larger in PS compared to those in
SA. However, the fitness of the best models obtained
by each method shows a clear advantage for particle
swarms, which discovered better solutions in two of
the three data sets. Thus, although annealing does
converge with greater precision, it converges to subop-
timal models that are perhaps more easily accessible
in the fitness landscape. Interestingly enough, increas-
ing the simulation time did not significantly affect
either one of the algorithms, with improvements limited
to less than 0.003 R units in all three cases. In the case
of particle swarms, we found that prolonging the
simulation time does not induce any additional sam-
pling and simply leads to repeated evaluation of the
same subsets.

To get a better appreciation of the relative distribution
of scores, the best models discovered in 50 reference PS
and SA runs were retrained using 1000 training epochs
and were cross-validated by the leave-one-out procedure
described in Methods. The models and their statistics
are listed in the order of decreasing R in Tables 4, 6,
and 8. The most intriguing results are those for the

AMA data set (Table 4), where the best model compris-
ing features 3, 4, and 49 was discovered in nearly half
of the PS runs but not even once by SA. This model is
substantially more fit than any other model discovered
by the two algorithms and lies 0.026 R units above the
second best (features 31, 34, and 49), which was found
nine times by the particle swarm and only twice by
annealing. In fact, this second model is the only one that
was discovered by both algorithms, suggesting that each
method has a clear and distinct preference for certain
types of local minima.

The BZ results present a different situation (Table
6). Here, there are a much larger number of good-quality
models and none of the algorithms show any notable
preference for any particular solution. Indeed, neither
PS nor SA converged more than 2-3 times to the same
answer, producing no less than 46 and 42 distinct
solutions, respectively, with only 6 of them in common.
Although simulated annealing produced slightly better
models, the differences in fitness were very small and
probably statistically insignificant (the top 25 models
were within only 0.006 units from each other on the R
scale).

Table 6. Best Models Selected by PSa and SAb for the BZ Data Set (50 Runs, 1000 Training Epochs)

rank featuresc
freq
(PS)d

freq
(SA)e µ(R)f σ(R)g µ(RCV)h σ(RCV)i rank featuresc

freq
(PS)d

freq
(SA)e µ(R)f σ(R)g µ(RCV)h σ(RCV)i

1 1, 4, 5, 9, 15, 23 1 2 0.963 0.001 0.874 0.019 42 1, 3, 6, 9, 18, 19 0 1 0.951 0.008 0.857 0.008
2 1, 3, 4, 9, 15, 23 0 3 0.963 0.000 0.876 0.007 43 0, 1, 5, 9, 19, 20 1 0 0.951 0.009 0.874 0.008
3 1, 3, 6, 9, 15, 23 0 1 0.962 0.001 0.881 0.010 44 0, 1, 3, 9, 19, 31 0 1 0.950 0.007 0.886 0.014
4 1, 4, 5, 9, 20, 22 1 0 0.962 0.002 0.869 0.018 45 1, 4, 6, 9, 16, 18 0 1 0.950 0.010 0.897 0.011
5 1, 3, 4, 9, 15, 22 0 2 0.961 0.002 0.845 0.033 46 0, 1, 5, 9, 19, 31 1 0 0.949 0.009 0.883 0.005
6 1, 4, 5, 9, 15, 27 0 1 0.961 0.000 0.896 0.003 47 1, 5, 9, 13, 19, 36 1 0 0.949 0.004 0.871 0.007
7 1, 4, 6, 9, 15, 27 1 2 0.961 0.001 0.870 0.019 48 0, 1, 5, 9, 14, 16 1 0 0.949 0.009 0.883 0.023
8 1, 4, 5, 9, 15, 38 0 1 0.960 0.000 0.882 0.018 49 1, 2, 4, 6, 9, 19 1 0 0.949 0.012 0.853 0.021
9 0, 1, 3, 9, 15, 16 0 1 0.960 0.000 0.871 0.009 50 0, 1, 3, 9, 14, 18 0 1 0.949 0.010 0.862 0.008

10 1, 3, 4, 7, 9, 15 1 0 0.960 0.000 0.857 0.016 51 0, 1, 3, 9, 13, 19 0 1 0.948 0.006 0.880 0.010
11 1, 4, 6, 9, 15, 22 2 0 0.960 0.002 0.894 0.014 52 0, 1, 5, 9, 11, 14 0 1 0.946 0.008 0.864 0.016
12 1, 3, 4, 9, 10, 15 0 1 0.960 0.001 0.870 0.003 53 1, 3, 9, 11, 14, 34 0 1 0.946 0.003 0.887 0.007
13 0, 1, 4, 5, 9, 15 1 0 0.959 0.001 0.868 0.014 54 1, 3, 4, 9, 18, 19 2 1 0.946 0.005 0.855 0.011
14 1, 3, 6, 9, 15, 27 3 0 0.959 0.010 0.860 0.016 55 1, 3, 6, 9, 17, 18 0 1 0.946 0.006 0.839 0.005
15 0, 1, 3, 9, 16, 19 0 1 0.959 0.006 0.850 0.016 56 1, 3, 9, 17, 18, 22 0 1 0.945 0.001 0.857 0.023
16 1, 3, 4, 9, 15, 38 1 1 0.959 0.007 0.885 0.007 57 1, 4, 5, 9, 12, 19 1 0 0.945 0.002 0.880 0.013
17 1, 2, 3, 4, 9, 20 1 0 0.959 0.005 0.864 0.004 58 1, 3, 9, 11, 14, 23 0 1 0.945 0.005 0.888 0.003
18 1, 3, 4, 8, 9, 15 1 0 0.959 0.000 0.876 0.022 59 0, 1, 3, 9, 18, 19 1 2 0.945 0.007 0.871 0.019
19 0, 1, 5, 9, 19, 41 1 0 0.958 0.000 0.886 0.011 60 1, 2, 3, 9, 17, 31 0 1 0.945 0.008 0.862 0.014
20 1, 4, 6, 8, 9, 15 0 1 0.958 0.001 0.881 0.007 61 1, 2, 5, 9, 17, 18 0 1 0.943 0.008 0.826 0.015
21 1, 4, 5, 9, 15, 20 1 1 0.958 0.002 0.899 0.017 62 1, 3, 9, 15, 19, 33 1 0 0.943 0.002 0.866 0.019
22 1, 3, 6, 8, 9, 15 1 0 0.957 0.001 0.872 0.023 63 0, 1, 3, 9, 11, 14 0 1 0.942 0.005 0.879 0.013
23 1, 4, 6, 9, 15, 38 1 0 0.957 0.004 0.899 0.009 64 0, 1, 3, 9, 14, 20 0 1 0.942 0.007 0.868 0.014
24 1, 4, 5, 9, 15, 24 1 0 0.957 0.002 0.868 0.044 65 0, 1, 4, 9, 15, 19 1 0 0.942 0.003 0.861 0.014
25 1, 5, 6, 8, 9, 15 1 0 0.957 0.001 0.871 0.019 66 1, 5, 9, 16, 20, 26 1 0 0.941 0.008 0.883 0.006
26 0, 1, 5, 9, 15, 16 0 1 0.956 0.004 0.880 0.005 67 1, 2, 3, 5, 9, 19 1 0 0.940 0.001 0.866 0.016
27 1, 3, 4, 9, 17, 20 1 0 0.954 0.007 0.858 0.008 68 1, 3, 4, 9, 15, 29 0 1 0.940 0.013 0.870 0.010
28 1, 3, 4, 9, 15, 27 0 2 0.953 0.020 0.875 0.005 69 0, 1, 5, 9, 19, 23 1 0 0.939 0.003 0.890 0.010
29 1, 4, 5, 9, 15, 28 0 1 0.953 0.009 0.866 0.030 70 1, 3, 4, 9, 16, 20 0 1 0.938 0.010 0.862 0.009
30 1, 4, 5, 8, 9, 15 1 0 0.953 0.007 0.873 0.020 71 0, 1, 5, 9, 19, 27 0 1 0.937 0.001 0.888 0.007
31 1, 3, 5, 9, 15, 23 1 0 0.953 0.008 0.852 0.016 72 0, 2, 5, 9, 15, 23 0 1 0.935 0.018 0.872 0.013
32 1, 5, 6, 9, 10, 15 1 0 0.953 0.006 0.856 0.007 73 0, 1, 5, 6, 9, 20 1 0 0.934 0.029 0.845 0.010
33 1, 4, 6, 9, 20, 21 1 0 0.953 0.005 0.900 0.019 74 1, 5, 6, 9, 12, 15 1 0 0.933 0.031 0.856 0.009
34 1, 2, 4, 5, 9, 20 1 0 0.952 0.007 0.862 0.006 75 1, 3, 9, 15, 22, 23 0 1 0.932 0.016 0.867 0.009
35 1, 4, 5, 9, 20, 41 1 0 0.952 0.005 0.884 0.017 76 1, 4, 6, 9, 15, 23 0 2 0.930 0.038 0.886 0.018
36 1, 3, 4, 9, 15, 17 1 0 0.952 0.008 0.834 0.024 77 0, 1, 3, 7, 9, 15 1 0 0.928 0.032 0.864 0.002
37 1, 3, 4, 9, 15, 28 1 0 0.952 0.020 0.874 0.008 78 1, 4, 5, 9, 11, 15 1 0 0.920 0.019 0.859 0.020
38 1, 5, 6, 9, 19, 20 1 0 0.951 0.007 0.846 0.015 79 1, 5, 6, 9, 15, 25 1 0 0.919 0.028 0.835 0.014
39 0, 1, 3, 9, 15, 20 0 1 0.951 0.007 0.867 0.005 80 1, 4, 5, 9, 20, 23 0 1 0.917 0.020 0.901 0.005
40 1, 4, 5, 9, 17, 20 1 0 0.951 0.008 0.867 0.035 81 1, 3, 6, 9, 15, 26 1 0 0.916 0.031 0.872 0.010
41 1, 3, 8, 9, 15, 23 0 1 0.951 0.003 0.877 0.019 82 0, 1, 2, 5, 9, 14 0 1 0.915 0.131 0.519 0.424

a Swarm parameters: 100 particles, 10 iterations, η1 ) 1, η2 ) 1, ω ) 0.9, R ) 2. b Annealing parameters: 30 temperature cycles, 33
sampling steps. c Zero-based indices of features comprising the best models identified by 50 independent runs of the PS and SA algorithms.
d Number of times that the PS algorithm converged to this model. e Number of times that the SA algorithm converged to this model.
f Mean training R. g Standard deviation of training R. h Mean leave-one-out cross-validated R. i Standard deviation of leave-one-out cross-
validated R.
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The PYR data set falls somewhere in between. As
with AMA and BZ, the number of models discovered by
both algorithms is disappointingly small (4), with PS
producing by far the best solutions (22 of the top 25
models, spanning 0.014R units). In addition, PS gener-
ated 43 unique solutions, proving once again that it is
capable of unveiling the diversity of the solution space
when the models are of comparable fitness. On the other
hand, annealing produced only 16 unique models, the
most frequent of which ranked 35th (13 times), 46th (8
times), 48th (6 times), 51st (6 times), and 26th (5 times),
respectively.

These results suggest that particle swarms are a very
competitive optimization technique that offers two
important advantages over simulated annealing. The
first is the ability to discover better solutions, particu-
larly when there is a significant variation in fitness, and
the second is the ability to produce a more diverse set
of solutions of comparable quality. We believe that this
is achieved by casting a wider net over the state space
and capitalizing on the parallel nature of the search.
Some researchers may find this uncomforting. After all,
an ideal optimizer should be able to discover the global
minimum both quickly and reliably. Unfortunately,
none of the methods examined here offers that luxury,
and as the PYR results demonstrate, consistency may
often come at the expense of quality.

A note on cross-validation: The results in Tables 4,
6, and 8 show the futility of comparing optimization
algorithms on the basis of cross-validated errors, unless
these are the functions that are being explicitly opti-
mized during the search. It is indicative that the models
with the best RCV rank 3rd, 80th, and 41st in terms of
training R for the AMA, BZ, and PYR data sets, respec-
tively, whereas the models with the highest training R
rank 5th, 31st, and 19th in terms of RCV. It is unclear
whether the optimal solutions in a cross-validated sense
are even listed in Tables 4, 6, and 8. One thing is
certain: the two algorithms explore the state space in
fundamentally different ways and are greatly affected
by the nature of the fitness landscape. If the aim is to
produce models that perform well on cross-validation,
then the cross-validation error should be taken directly
into account during feature selection. Unfortunately, the
instability of neural networks (i.e., their susceptibility

to the training parameters) makes this a very difficult
and computationally challenging proposition.

Finally, we should point out that although several
other optimization algorithms have been tested on these
data sets, a direct comparison is not possible because
of the instability problem of neural networks mentioned
above. Our results are based on the statistical distribu-
tion of R scores collected over a large number of runs
and are not as sensitive to initialization. A more
systematic comparison of several optimization heuristics
in the context of feature selection is currently underway
and will be presented in due course.

Swarm Trajectories. Valuable insight into the
behavior of particle swarms can be gleaned by projecting
the trajectories of the particles onto a two-dimensional
plane using nonlinear mapping.34 This method attempts
to visualize a set of objects described by a (dis)similarity
or distance matrix onto a low-dimensional display plane
in a way that preserves the proximities of the objects
as much as possible. More specifically, given a set of k
objects, a symmetric matrix, dij, of dissimilarities be-
tween these objects, and a set of images on an n-
dimensional display plane {yi, i ) 1, 2, ..., k; yi ∈ Rn},
nonlinear mapping attempts to place yi onto the plane
in such a way that their Euclidean distances δij ) ||yi
- yj|| approximate as closely as possible the correspond-
ing values dij.

To visualize the movement of the swarm population,
the location vectors xi(t) of all the particles are moni-
tored throughout the simulation and recorded on an m
× n matrix, where m is the number of particles times
the number of iterations and n is the total number of
features in the input data. At the end of the simu-
lation, the location vectors are mapped from Rn to R2

using the Euclidean distance as a measure of simi-
larity. In this work, the actual projection was carried
out using a fast nonlinear mapping algorithm developed
by our group.35,36 The result for a typical PS run on
the AMA data set involving 100 particles and 50
iterations is illustrated in Figure 2. The three snap-
shots show the location of the swarm at the beginning
(Figure 2a), middle (Figure 2b), and end (Figure 2c) of
the simulation. The map has a Kruskal stress of 0.262
and exhibits an interesting structure comprising four
partial concentric rings. This structure stems from the

Table 7. Quality of Models Selected by PS, SA, and Random Selection for the PYR Data Set, with Each Row Representing 50
Independent Optimization Runs

opta sizeb stepsc η1
d η2

e ωf Rg trialsh µ(R)i σ(R)j min(R)k max(R)l

PS 100 10 1 1 0.9 2 3 0.918 0.019 0.861 0.940
PS 50 20 1 1 0.9 2 3 0.920 0.022 0.859 0.946
PS 25 40 1 1 0.9 2 3 0.916 0.021 0.865 0.944
PS 10 100 1 1 0.9 2 3 0.898 0.034 0.751 0.942
PS 100 10 1 0.5 0.9 2 3 0.904 0.039 0.702 0.941
PS 100 10 1 0 0.9 2 3 0.908 0.021 0.834 0.934
PS 100 10 0.5 1 0.9 2 3 0.913 0.025 0.817 0.938
PS 100 10 0 1 0.9 2 3 0.912 0.031 0.763 0.941
PS 100 10 1 1 0.5 2 3 0.911 0.030 0.807 0.942
PS 100 10 1 1 0.1 2 3 0.909 0.036 0.743 0.935
PS 100 20 1 1 0.9 2 3 0.922 0.018 0.877 0.943
SA 30 33 3 0.920 0.005 0.904 0.931
SA 30 66 3 0.922 0.004 0.909 0.931
SA 30 133 3 0.924 0.003 0.914 0.931
R 1000 3 0.898 0.055 0.561 0.938
a Optimizarion algorithm (PS, particle swarm; SA, simulated annealing; R, random selection). b Number of particles in the swarm.

c Number of iterations. d Cognitive learning rate. e Social learning rate. f Inertia. g Selection pressure. h Number of back-propagation
refinements. i Mean training R. j Standard deviation of training R. k Minimum training R. l Maximum training R.
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quantized nature of the distance function, which for
three-feature subsets can only assume the values 0,
21/2, 41/2, and 61/2 (subsets can only differ by 0, 2, 4, and
6 features, respectively). In the beginning, the particles
are spread out across the state space, but as the simula-
tion progresses, they begin to converge and eventually
coalesce into a small number of local minima. This
result seems to suggest that particle swarms are capable
of niching and speciation; at some point in the simula-
tion, the swarm can split into subgroups, which gradu-
ally drift away from each other, following their own
independent trajectories. This is typical of many popu-
lation-based algorithms37,38 and could be exploited to
introduce diversity in the resulting models.

A more quantitative measure of the degree of local-
ization can be provided by information theory and the
concept of Shannon entropy. Two types of entropies can
be defined. The first is the particle entropy Si which is
based on the factional coordinates of the location vectors
prior to roulette wheel selection:

where pij values are the probabilities computed by eq
5. The second is the swarm entropy S, which measures
the distribution of features across the entire swarm:

Table 8. Best Models Selected by PSa and SAb for the PYR Data Set (50 Runs, 1000 Training Epochs)

rank featuresc freq (PS)d freq (SA)e µ(R)f σ(R)g µ(RCV)h σ(RCV)i

1 0, 5, 10, 11, 19, 22 1 0 0.951 0.002 0.777 0.020
2 0, 2, 5, 10, 19, 22 2 0 0.951 0.007 0.786 0.023
3 5, 8, 11, 16, 19, 22 2 0 0.949 0.012 0.799 0.013
4 0, 4, 5, 10, 19, 22 1 0 0.948 0.006 0.771 0.026
5 5, 8, 10, 11, 19, 22 1 0 0.947 0.009 0.773 0.026
6 0, 1, 5, 10, 19, 22 1 0 0.946 0.004 0.790 0.017
7 0, 5, 10, 16, 19, 22 1 0 0.945 0.018 0.808 0.014
8 4, 5, 8, 10, 19, 22 1 1 0.944 0.006 0.781 0.024
9 0, 5, 10, 19, 21, 22 0 1 0.944 0.003 0.726 0.026

10 0, 5, 8, 10, 19, 22 2 0 0.944 0.004 0.804 0.015
11 0, 5, 10, 14, 19, 22 1 0 0.943 0.004 0.775 0.013
12 2, 5, 6, 16, 19, 22 1 0 0.941 0.005 0.793 0.022
13 5, 8, 10, 19, 20, 22 1 0 0.941 0.004 0.749 0.024
14 0, 5, 10, 19, 22, 25 1 0 0.941 0.005 0.726 0.010
15 0, 5, 10, 12, 19, 22 1 0 0.941 0.012 0.772 0.013
16 0, 5, 16, 19, 21, 22 1 1 0.940 0.011 0.742 0.025
17 2, 5, 6, 10, 19, 22 1 0 0.940 0.006 0.750 0.031
18 5, 8, 10, 18, 19, 22 1 0 0.940 0.011 0.754 0.026
19 0, 3, 5, 10, 19, 22 1 0 0.940 0.015 0.777 0.036
20 5, 8, 10, 13, 19, 22 1 0 0.939 0.010 0.771 0.026
21 0, 5, 6, 10, 19, 22 1 0 0.939 0.007 0.779 0.018
22 0, 4, 6, 10, 19, 22 1 0 0.939 0.016 0.748 0.013
23 5, 7, 10, 11, 19, 22 1 0 0.938 0.007 0.784 0.010
24 1, 4, 5, 10, 22, 25 1 0 0.938 0.016 0.618 0.018
25 5, 6, 10, 18, 19, 22 1 0 0.937 0.009 0.731 0.029
26 3, 5, 11, 16, 19, 22 0 5 0.937 0.009 0.792 0.034
27 2, 5, 8, 9, 19, 22 1 0 0.936 0.008 0.730 0.034
28 5, 8, 11, 19, 22, 25 1 0 0.936 0.006 0.632 0.029
29 3, 5, 6, 10, 19, 22 0 1 0.936 0.009 0.774 0.054
30 5, 11, 16, 19, 21, 22 1 1 0.936 0.009 0.732 0.026
31 5, 6, 16, 19, 21, 22 3 0 0.935 0.010 0.729 0.021
32 5, 6, 10, 19, 21, 22 3 0 0.935 0.014 0.702 0.038
33 0, 3, 5, 16, 19, 22 0 2 0.934 0.012 0.787 0.021
34 5, 8, 16, 19, 21, 22 1 0 0.934 0.021 0.748 0.031
35 3, 5, 6, 16, 19, 22 1 13 0.934 0.009 0.781 0.034
36 1, 5, 10, 22, 25, 26 1 0 0.933 0.013 0.626 0.012
37 0, 3, 10, 19, 22, 23 1 0 0.932 0.019 0.682 0.025
38 5, 10, 11, 19, 22, 25 1 0 0.932 0.007 0.686 0.028
39 1, 4, 10, 22, 23, 25 1 0 0.932 0.018 0.628 0.008
40 5, 10, 11, 19, 21, 22 1 0 0.930 0.016 0.717 0.020
41 1, 2, 5, 8, 19, 22 1 0 0.930 0.002 0.808 0.026
42 5, 6, 12, 16, 19, 22 1 0 0.930 0.017 0.771 0.030
43 1, 2, 4, 5, 19, 21 0 1 0.930 0.007 0.778 0.040
44 5, 8, 9, 19, 22, 25 1 0 0.929 0.003 0.659 0.022
45 0, 4, 16, 19, 22, 25 1 0 0.928 0.026 0.739 0.011
46 2, 3, 5, 6, 19, 22 0 8 0.927 0.012 0.787 0.023
47 4, 5, 10, 11, 19, 22 0 1 0.927 0.010 0.710 0.016
48 1, 2, 3, 5, 19, 22 0 6 0.926 0.004 0.795 0.015
49 1, 10, 19, 22, 25, 26 1 0 0.925 0.005 0.551 0.008
50 4, 5, 10, 19, 20, 22 0 1 0.925 0.007 0.728 0.022
51 2, 3, 5, 16, 19, 22 0 6 0.924 0.005 0.781 0.032
52 0, 1, 2, 16, 19, 21 0 1 0.920 0.015 0.785 0.034
53 3, 5, 8, 10, 21, 25 1 0 0.916 0.019 0.639 0.023

a Swarm parameters: 100 particles, 10 iterations, η1 ) 1, η2 ) 1, ω ) 0.9, R ) 2. b Annealing parameters: 30 temperature cycles, 33
sampling steps. c Zero-based indices of features comprising the best models identified by 50 independent runs of the PS and SA algorithms.
d Number of times that the PS algorithm converged to this model. e Number of times that the SA algorithm converged to this model.
f Mean training R. g Standard deviation of training R. h Mean leave-one-out cross-validated R. i Standard deviation of leave-one-out cross-
validated R.

Si ) -∑
j)1

n

pij ln pij (7)
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where qi is the fraction of occurrences of the ith feature
in the entire population. Thus, Si represents the diver-
sity of the environment of the ith particle, whereas S
reflects the fixation of features and overall convergence
of the binary swarm. These two entropies are closely
related but not identical.

A plot of these entropies as a function of time for the
same 100-particle, 50-step simulation described above
is shown in Figure 3. Both entropy functions are
bounded by the two theoretical extrema, Smax ) 3.970
and Smin ) 1.099, which represent maximum diversity
(all features are sampled equally) and maximum de-
generacy (only three features are sampled), respectively.
Throughout the majority of the simulation, the swarm
entropy is substantially higher than the average indi-
vidual entropy, which reflects the collective diversity of
the population compared to local neighborhoods. How-
ever, as the simulation progresses and the swarm begins
to converge, these differences are narrowed and eventu-
ally a crossover occurs around the 41st cycle, which
manifests the strong selection pressure at the final
stages of the optimization.

IV. Conclusions
A promising new algorithm for selecting relevant

features for QSAR and QSPR has been described. The
method is based on a binary adaptation of particle
swarms, an intrinsically parallel optimization paradigm
inspired from the study of human sociality. In two out
of three data sets that were tested, the method was able
to identify a better and more diverse set of solutions
than simulated annealing given the same amount of
simulation time. The method appears capable of niching
and speciation, but unlike simulated annealing, it does
not converge as reliably to the same minimum. Non-
linear mapping was shown to be very effective in
visualizing the trajectories of the swarms, as were
Shannon entropies in quantifying their convergence.
Our study involved the construction of nearly 10 000 000
neural network models to ensure that the results were
statistically meaningful. While such an effort is not
required for routine applications on novel QSAR prob-
lems, it is important for validation purposes, where the
objective is to assert the superiority of one method over
another, and when the underlying predictor is inher-
ently unstable, as is the case with neural networks,
classification and regression trees, etc. Finally, the
reader is most certainly aware that, as in most QSAR
studies of this type, the conclusions may not necessarily
extend to other chemical and biological systems. True
validation can only come from extensive experimenta-
tion in real-world applications.
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swarm algorithm for the AMA data set (100 particles, 50
iterations, η1 ) η2 ) 1, ω ) 0.9, R ) 2). Dots represent all
visited states, and squares represent the position of the swarm
at the (a) beginning, (b) middle (iteration 25), and (c) end of
the simulation.

S ) -∑
i)1

n

qi ln qi (8)

Figure 3. Swarm entropy and mean particle entropy as a
function of time for the AMA run described in Figure 2.
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